代码随想录10 动态规划
动态规划基础
什么是动规?
动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。
动规问题的特点是每一个状态一定是由上一个状态推导出来的,这是与贪心的重要区别(贪心不推导状态,直接选取局部最优解)
解题步骤
- 确定dp数组(dp table)以及下标的含义
- 确定递推公式
- dp数组如何初始化
- 确定遍历顺序
- 举例推导dp数组
LeetCode 509 斐波那契数
斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。
示例 1:
- 输入:2
- 输出:1
- 解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:
- 输入:3
- 输出:2
- 解释:F(3) = F(2) + F(1) = 1 + 1 = 2
示例 3:
- 输入:4
- 输出:3
- 解释:F(4) = F(3) + F(2) = 2 + 1 = 3
提示:
- 0 <= n <= 30
暴力方法
如果输入的n大于2,就逐个累加,得到长度为n+1的斐波那契数列数组,返回最后一个数即可
1 |
|
动规
状态转移方程为:dp[i] = dp[i-1] + dp[i-2],因此只需要两个变量记录状态
1 |
|
LeetCode 647 回文子串
给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。
具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。
示例 1:
- 输入:”abc”
- 输出:3
- 解释:三个回文子串: “a”, “b”, “c”
示例 2:
- 输入:”aaa”
- 输出:6
- 解释:6个回文子串: “a”, “a”, “a”, “aa”, “aa”, “aaa”
提示:输入的字符串长度不会超过 1000 。
暴力解法
先找到所有子串,然后判断每个子串是否是回文串,复杂度O(n^3)
1 |
|
动态规划
分析可知,要判断字符串 d[i][j] 是否为回文子串,可以先看 d[i+1][j-1] 是否为回文串;
接下来确定递推公式:
如果 d[i] != d[j],则d[i][j] 一定不是回文子串
如果 d[i] == d[j],分两种情况:
当 j-i <= 1 时,d[i][j] 是回文子串
当 j-1 > 1时,如果 d[i+1][j-1] 是回文子串,则 d[i][j] 是回文子串
递归公式如下:
1 |
|
所以,可以将回文子串映射到二维数组上,如果对应位置为true,则是回文子串,如果为false,则不是;
先将所有 d[i][j] 初始化为 false,不能在初始化时就完成判断;
根据递推公式,d[i][j] 是根据其左下角的 d[i+1][j-1] 得到的,因此在遍历时应当从下往上,从左往右遍历
1 |
|
LeetCode 70 爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
- 输入: 2
- 输出: 2
- 解释: 有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
- 输入: 3
- 输出: 3
- 解释: 有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
1 |
|
Leetcode 746 使用最小花费爬楼梯
旧题目描述:
数组的每个下标作为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i](下标从 0 开始)。
每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶梯或者爬两个阶梯。
请你找出达到楼层顶部的最低花费。在开始时,你可以选择从下标为 0 或 1 的元素作为初始阶梯。
示例 1:
- 输入:cost = [10, 15, 20]
- 输出:15
- 解释:最低花费是从 cost[1] 开始,然后走两步即可到阶梯顶,一共花费 15 。
示例 2:
- 输入:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
- 输出:6
- 解释:最低花费方式是从 cost[0] 开始,逐个经过那些 1 ,跳过 cost[3] ,一共花费 6 。
提示:
- cost 的长度范围是 [2, 1000]。
- cost[i] 将会是一个整型数据,范围为 [0, 999] 。
1 |
|
Leetcode 62 不同路径
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
- 输入:m = 3, n = 7
- 输出:28
示例 2:
- 输入:m = 2, n = 3
- 输出:3
解释: 从左上角开始,总共有 3 条路径可以到达右下角。
- 向右 -> 向右 -> 向下
- 向右 -> 向下 -> 向右
- 向下 -> 向右 -> 向右
示例 3:
- 输入:m = 7, n = 3
- 输出:28
示例 4:
- 输入:m = 3, n = 3
- 输出:6
提示:
- 1 <= m, n <= 100
- 题目数据保证答案小于等于 2 * 10^9
1 |
|